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Different types of  differential eqations

• Categorization –I:

• Ordinary:
𝑑2𝑢

𝑑𝑡2
+ 𝜔2𝑢 = 0

• Partial: 
𝜕𝑤

𝜕𝑡
= −𝑢

𝜕𝑤

𝜕𝑥
− 𝛼

𝜕𝑝

𝜕𝑧
− g;

𝜕2𝑇

𝜕𝑡2
= −𝑘

𝜕2𝑇

𝜕𝑥2

• Categorization – II:

• Linear: 
𝜕𝑤

𝜕𝑡
= −𝑐

𝜕𝑤

𝜕𝑥
; 𝑐 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

• Non-Linear: 
𝜕𝑇

𝜕𝑡
= −𝑢

𝜕𝑇

𝜕𝑥



General form of  2nd order PDE

General form of  2nd order PDE is: 𝐴
𝜕2𝑢

𝜕𝑥2
+ 𝐵

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐶

𝜕2𝑢

𝜕𝑦2
+ 𝐷

𝜕𝑢

𝜕𝑥
+ 𝐸

𝜕𝑢

𝜕𝑦
+ 𝐹𝑢=G

A,B,C,D,E,F are coefficients, may be all of  them constants or a couple/all of  them may be 

functions of  x,y; G is a known quantity may be a constant or a function of  x,y and u(x,y) 

is an unknown function to be determined.

If  all these coefficients are constants or functions of  independent variables ( x , y), then 

the resulting PDE is known as a Linear PDE. Example: 

On the other hand, if  at least one these coefficients is a function dependent variable, then 

the resulting PDE is known as a non-linear PDE. Example: 
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Governing equations of  NWP

•
𝜕𝑢

𝜕𝑡
= − 𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+ 𝑤

𝜕

𝜕𝑧
𝑢 −

1

𝜌

𝜕𝑝

𝜕𝑥
− 2𝛺 𝑤 𝑐𝑜𝑠 𝜑 − 𝑣 𝑠𝑖𝑛 𝜑 +

𝑢𝑣

𝑎
𝑡𝑎𝑛𝜑 −

𝑢𝑤

𝑎
+

𝜇

𝜌
𝛻2𝑢,    

•
𝜕𝑣

𝜕𝑡
= − 𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+ 𝑤

𝜕

𝜕𝑧
𝑣 −

1

𝜌

𝜕𝑝

𝜕𝑦
− 2𝛺 𝑢 𝑠𝑖𝑛 𝜑 −

𝑢2

𝑎
𝑡𝑎𝑛𝜑 −

𝑣𝑤

𝑎
+

𝜇

𝜌
𝛻2𝑣

•
𝜕𝑤

𝜕𝑡
= − 𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+𝑤

𝜕

𝜕𝑧
𝑤 −

1

𝜌

𝜕𝑝

𝜕𝑧
− 𝑔 + 2𝛺 𝑢 𝑐𝑜𝑠 𝜑 +

𝑢2+𝑣2

𝑎
+

𝜇

𝜌
𝛻2𝑤,  

•
𝜕𝑇

𝜕𝑡
= − 𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+ 𝑤

𝜕

𝜕𝑧
𝑇 +

1

𝑐𝑣

𝑑𝑄

𝑑𝑡
− 𝛾 − 1 𝑇

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧

•
𝜕𝜌

𝜕𝑡
= − 𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+𝑤

𝜕

𝜕𝑧
𝜌 − 𝜌

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
,  
𝜕𝑞

𝜕𝑡
= − 𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+ 𝑤

𝜕

𝜕𝑧
𝑞

• 𝑝 = 𝜌𝑅𝑇

• ⟹ Governing equations are non-linear partial differential equation



• These non-linear PDE can’t be solved analytically, a couple of  the reasons for which 
are:

• We don’t have any analytical expression for the time & space variations of  the 
Meteorological variables.

• Rather we have their numerical values at discrete points in space at a given time

• Coefficients of  the non-linear terms also don’t have known analytical expression.

• Then what?

• Proceed for alternative approach – Numerical methods is one of  the alternative 
approaches for time integration of  the model equations.



Numerical methods

• In numerical method first the continuous time and 3-D space domain are discretized, like, 

𝑥, 𝑦, 𝑧 : (𝑥, 𝑦, 𝑧) ∈ 𝑅3 → 𝑖∆𝑥, 𝑗∆𝑦, 𝑘∆𝑧 : 𝑖, 𝑗, 𝑘 ∈ ℤ3&∆𝑥, ∆𝑦, ∆𝑧 𝑔𝑖𝑣𝑒𝑛 and  time domain ሼ
ሽ

𝑡: 0 ≪ 𝑡 <
∞ → 𝑛∆𝑡: 𝑛 ∈ ℤ &∆𝑡 𝑔𝑖𝑣𝑒𝑛 . 

• The discrete spatial points 𝑖∆𝑥, 𝑗∆𝑦, 𝑘∆𝑧 are denoted by 𝑖, 𝑗, 𝑘 and called  𝑖, 𝑗, 𝑘 grid point. Similarly, 

the discrete time  𝑛∆𝑡 is called ‘n’ th time step. 

• In numerical method values of the field variables (𝑢, 𝑣, 𝑤, 𝑝, 𝑇, 𝑞, 𝜌) are specified at all discrete grid 

points at the time step ‘0’ (initial time). 

• Using these values of the field variables at different grid points at a given time step, spatial derivatives 

of the field variables are approximated numerically using a suitable finite difference scheme (FDS), for 

specifying the right-hand sides of the equations completely. 

• This is followed by numerical integration in time for predicting values of the variable valid at next time 

step.



…..Numerical methods

• Finite difference methods:

• To approximate numerically the time & space derivatives of  the variables

• Major finite differencing techniques:

• Forward

• Backward

• Central or leapfrog



• Taylor’s series: It is known that if  a real valued function 𝑓(𝑥) is infinitely differentiable over the 
closed interval 𝑎, 𝑎 + ℎ , i.e., if  𝑓(𝑥) is analytical over 𝑎, 𝑎 + ℎ , then 

𝑓 𝑎 + ℎ = 𝑓 𝑎 + σ𝑛=1
∞ ℎ𝑛

𝑛!
𝑓 𝑛 (𝑎) . Meteorological variables are assumed to be continuous in 

space & time domain.

• Thus in a given grid  𝑥𝑗,𝑥𝑗+1 , 𝑓𝑗±1
𝑛 = 𝑓 𝑥𝑗±1, 𝑛∆𝑡 = 𝑓 𝑥𝑗 ± ∆𝑥, 𝑛∆𝑡 = 𝑓 𝑥𝑗 , 𝑛∆𝑡 ±

σ𝑙=1
∞ ∆𝑥 𝑙

𝑙!

𝜕𝑙𝑓

𝜕𝑥𝑙 𝑗

𝑛

= 𝑓𝑗
𝑛 ±σ𝑙=1

∞ ∆𝑥 𝑙

𝑙!

𝜕𝑙𝑓

𝜕𝑥𝑙 𝑗

𝑛

And 𝑓𝑗
𝑛±1 = 𝑓𝑗

𝑛 ± σ𝑘=1
∞ ∆𝑡 𝑘

𝑘!

𝜕𝑘𝑓

𝜕𝑡𝑘 𝑗

𝑛



…..Numerical methods

Forward differencing scheme (FDS):

•
𝜕𝑓

𝜕𝑡 (𝑖,𝑗,𝑘)

𝑛
≈

𝑓𝑖𝑗𝑘
𝑛+1−𝑓𝑖𝑗𝑘

𝑛

∆𝑡
+ 𝑇𝑒𝑟𝑚𝑠 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 ∆𝑡,

•
𝜕𝑓

𝜕𝑥 (𝑖,𝑗,𝑘)

𝑛
≈

𝑓(𝑖+1)𝑗𝑘
𝑛−𝑓𝑖𝑗𝑘

𝑛

∆𝑥
+𝑇𝑒𝑟𝑚𝑠 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 ∆𝑥 etc.

• Error~𝑂(∆𝑥, ∆𝑦, ∆𝑧, ∆𝑡)



…..Numerical methods

Backward differencing scheme (BDS):

•
𝜕𝑓

𝜕𝑡 (𝑖,𝑗,𝑘)

𝑛
≈

𝑓𝑖𝑗𝑘
𝑛−𝑓𝑖𝑗𝑘

𝑛−1

∆𝑡
+ 𝑇𝑒𝑟𝑚𝑠 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 ∆𝑡,

•
𝜕𝑓

𝜕𝑥 (𝑖,𝑗,𝑘)

𝑛
≈

𝑓𝑖𝑗𝑘
𝑛−𝑓(𝑖−1)𝑗𝑘

𝑛

∆𝑥
+𝑇𝑒𝑟𝑚𝑠 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 ∆𝑥 etc.

• Error~𝑂(∆𝑥, ∆𝑦, ∆𝑧, ∆𝑡)



…..Numerical methods

Central differencing scheme or leap frog scheme (LFS):

•
𝜕𝑓

𝜕𝑡 (𝑖,𝑗,𝑘)

𝑛
≈

𝑓𝑖𝑗𝑘
(𝑛+1)

−𝑓𝑖𝑗𝑘
(𝑛−1)

2∆𝑡
+ 𝑇𝑒𝑟𝑚𝑠 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓(∆𝑡)2,

•
𝜕𝑓

𝜕𝑥 (𝑖,𝑗,𝑘)

𝑛
≈

𝑓 𝑖+1 𝑗𝑘
𝑛 −𝑓 𝑖−1 𝑗𝑘

𝑛

∆𝑥
+𝑇𝑒𝑟𝑚𝑠 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓(∆𝑥)2etc.

• Error~𝑂 (∆𝑥)2, (∆𝑦)2, (∆𝑧)2, (∆𝑡)2



• Non linear horizontal advection of  a scalar 𝑆(𝑥, 𝑦) can be 

expressed as  −𝑉𝐻 . 𝛻𝐻𝑆

• = − u
𝜕𝑆

𝜕𝑥
+ 𝑣

𝜕𝑆

𝜕𝑦
= − −

𝜕𝜓

𝜕𝑦

𝜕𝑆

𝜕𝑥
+

𝜕𝜓

𝜕𝑥

𝜕𝑆

𝜕𝑦
..(1)

= 𝐽 𝑆, 𝜓 ;𝑤ℎ𝑒𝑟𝑒 𝜓 𝑖𝑠 𝑎 𝑠𝑡𝑟𝑒𝑎𝑚 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 &𝐽 𝑆, 𝜓

Is the Jacobean of  𝜓 and S. 𝐽 𝑆, 𝜓 can also be expressed as given 

below:

𝐽 𝑆, 𝜓 =
𝜕

𝜕𝑥
𝜓

𝜕𝑆

𝜕𝑦
−

𝜕

𝜕𝑦
𝜓

𝜕𝑆

𝜕𝑥
…(2) and 

𝐽 𝑆, 𝜓 =
𝜕

𝜕y
S
𝜕ψ

𝜕x
−

𝜕

𝜕x
S
𝜕ψ

𝜕y
… . (3) Arakawa 9-point Grid



Numerical approximation of  Jacobean

• Numerical approximate value of  the 3 expressions of  𝐽 𝜓, 𝑆 𝑐𝑎𝑛 𝑏𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑎𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑠:

•

𝜓 𝑖+1,𝑗 −𝜓 𝑖−1,𝑗 𝑆 𝑖,𝑗+1 −𝑆 𝑖,𝑗−1

− 𝑆 𝑖+1,𝑗 −𝑆 𝑖−1,𝑗 𝜓 𝑖,𝑗+1 −𝜓 𝑖,𝑗−1

4𝑑2
= 𝐽1… 1

•

𝜓 𝑖+1,𝑗 𝑆 𝑖+1,𝑗+1 −𝑆 𝑖+1,𝑗−1 −𝜓 𝑖−1,𝑗 𝑆 𝑖−1,𝑗+1 −𝑆 𝑖−1,𝑗−1 −

𝜓 𝑖,𝑗+1 𝑆 𝑖+1,𝑗+1 −𝑆 𝑖−1,𝑗+1 −𝜓 𝑖,𝑗−1 𝑆 𝑖+1,𝑗−1 −𝑆 𝑖−1,𝑗−1

4𝑑2
= 𝐽2… 2

•

𝑆 𝑖,𝑗+1 𝜓 𝑖+1,𝑗+1 −𝜓 𝑖−1,𝑗+1 −𝑆 𝑖,𝑗−1 𝜓 𝑖+1,𝑗−1 −𝜓 𝑖−1,𝑗−1

− 𝑆 𝑖+1,𝑗 𝜓 𝑖+1,𝑗+1 −𝜓 𝑖+1,𝑗−1 −𝑆 𝑖−1,𝑗 𝜓 𝑖−1,𝑗+1 −𝜓 𝑖−1,𝑗−1

4𝑑2
= 𝐽3… 3



Numerical approximation of  Laplacian

• 𝑓𝑖±1,𝑗 = 𝑓 𝑥𝑖±1, 𝑦𝑗 = 𝑓 𝑥𝑖 ± ∆𝑥, 𝑦𝑗 = 𝑓 𝑥𝑖 , 𝑦𝑗 ±

σ𝑙=1
∞ ∆𝑥 𝑙

𝑙!

𝜕𝑙𝑓

𝜕𝑥𝑙 𝑖,𝑗

• 𝑓𝑖,𝑗±1 = 𝑓 𝑥𝑖 , 𝑦𝑗±1 = 𝑓 𝑥𝑖 , 𝑦𝑗 + ∆𝑦 = 𝑓 𝑥𝑖 , 𝑦𝑗 ±

σ𝑙=1
∞ ∆𝑦 𝑙

𝑙!

𝜕𝑙𝑓

𝜕𝑦𝑙 𝑖,𝑗

• Then, 𝛻2𝑓 𝑖,𝑗 ≈
𝑓(𝑖+1,𝑗)+𝑓 𝑖−1,𝑗 +𝑓(𝑖,𝑗+1)+𝑓 𝑖,𝑗−1 −4𝑓(𝑖,𝑗)

𝑑2
; where 

∆𝑥= ∆y =d is the grid length.

Laplacian of  a scalar field 𝑓(𝑥, 𝑦) at any point (𝑥, 𝑦) is given by,

𝛻2𝑓 =
𝜕2𝑓

𝜕𝑥2
+

𝜕2𝑓

𝜕𝑦2
. 



Relaxation method for solving Poison’s equation

General form of  2nd order PDE is: 𝐴
𝜕2𝑢

𝜕𝑥2
+ 𝐵

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐶

𝜕2𝑢

𝜕𝑦2
+ 𝐷

𝜕𝑢

𝜕𝑥
+ 𝐸

𝜕𝑢

𝜕𝑦
+ 𝐹𝑢=G

A,B,C,D,E,F are coefficients, may be all of  them constants or a couple/all of  them may be 
functions of  x,y; G is a known quantity may be a constant or a function of  x,y and u(x,y) is an 
unknown function to be determined.

Above equation is called Parabolic, if  𝐵2 − 4𝐴𝐶 = 0

Elliptic, if  𝐵2 − 4𝐴𝐶 < 0

and Hyperbolic, if  𝐵2 − 4𝐴𝐶 > 0

Poison’s equation is given by 𝛻2𝑢 = 𝐺(𝑥, 𝑦). For this equation, 𝐴 = 𝐵 = 1; 𝐶 = 𝐷 = 𝐸 = 𝐹 = 0.

So, for this equation, 𝐵2 − 4𝐴𝐶 = −4 < 0 ⇒ 𝑃𝑜𝑖𝑠𝑜𝑛′𝑠 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎𝑛 𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐 𝑃𝐷𝐸.



• Numerically approximate form of  the above equation at a grid point (𝑖, 𝑗) is 

𝑢(𝑖+1,𝑗) + 𝑢 𝑖−1,𝑗 + 𝑢(𝑖,𝑗+1) + 𝑢 𝑖,𝑗−1 − 4𝑢(𝑖,𝑗)

𝑑2
= 𝐺(𝑖,𝑗)

• This method starts with some initial guess values of  the unknown function u(x,y) at 

all grid points. If, 𝑢(𝑖,𝑗)
(0)

is the initial guess value of  u(x,y) at any arbitrary grid point 

(i,j); then error in the initial guess, when substituted in the above equation, is given 
by

𝑅(𝑖,𝑗)
(0)

=
𝑢(𝑖+1,𝑗)
(0)

+ 𝑢(𝑖−1,𝑗)
(0)

+ 𝑢(𝑖,𝑗+1)
(0)

+ 𝑢(𝑖,𝑗−1)
(0)

− 4𝑢(𝑖,𝑗)
(0)

𝑑2
− 𝐺(𝑖,𝑗)



Above relation gives an improved guess value of  u(x,y) at a grid point (i,j) 

• 𝑢(𝑖,𝑗)
(1)

=
𝑑2

4
𝑅 𝑖,𝑗

0
+ 𝑢(𝑖,𝑗)

(0)

• Then, following similar arguments, the error in the first improved guess is given by 

𝑅(𝑖,𝑗)
(1)

=
𝑢(𝑖+1,𝑗)
(1)

+ 𝑢(𝑖−1,𝑗)
(1)

+ 𝑢(𝑖,𝑗+1)
(1)

+ 𝑢(𝑖,𝑗−1)
(1)

− 4𝑢(𝑖,𝑗)
(1)

𝑑2
− 𝐺(𝑖,𝑗)

• And subsequently the second improved guess value is obtained as

• 𝑢(𝑖,𝑗)
(2)

=
𝑑2

4
𝑅 𝑖,𝑗

1
+ 𝑢(𝑖,𝑗)

(1)



The iteration process is said to converges when two successive improved guess of  the 
unknown function u(x,y) differs by a number smaller than a very small pre-assigned 

positive number, say, 𝜀,i.e., when 𝑢(𝑖,𝑗)
(𝑚+1)

− 𝑢(𝑖,𝑗)
(𝑚)

< 𝜀, at every grid point (i,j). 

Then either of  these two successive improved guess value may be treated as approximate 
numerical solution of  Poison’s equation at a grid point (i,j).

Using this method, knowing horizontal wind components (u,v) at different grid points, 

one can find out stream function 𝜓 , velocity potential 𝜒 , rotational wind 𝑉𝜓 and 

divergent wind 𝑉𝜒 , using following steps:



Vorticity(𝜍): 
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
≈

𝑣 𝑖+1 𝑗𝑘
𝑛 −𝑣 𝑖−1 𝑗𝑘

𝑛

2∆𝑥
−

𝑢𝑖 𝑗+1 𝑘
𝑛 −𝑢𝑖 𝑗−1 𝑘

𝑛

2∆𝑦

Divergence (𝐷ℎ) =
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
≈

𝑢 𝑖+1 𝑗𝑘
𝑛 −𝑣 𝑖−1 𝑗𝑘

𝑛

2∆𝑥
+

𝑣𝑖 𝑗+1 𝑘
𝑛 −𝑣𝑖 𝑗−1 𝑘

𝑛

2∆𝑦

• Set up the poison’s equations for the stream function 𝜓 and velocity potential 𝜒 : 𝛻2𝜓 =
𝜁(𝑥, 𝑦) and 𝛻2𝜒 = −𝐷ℎ(𝑥, 𝑦). 

• Solve them using Relaxation method to find out 𝜓, 𝜒 at each grid point (i,j) at any vertical level 

‘k’. 

• Then, rotational & divergent wind at any grid point are obtained as:

• 𝑉𝜓 = Ƹ𝑖 −
𝜕𝜓

𝜕𝑦
+ Ƹ𝑗

𝜕𝜓

𝜕𝑥
≈ Ƹ𝑖 −

𝜓𝑖 𝑗+1 𝑘
𝑛 −𝜓𝑖 𝑗−1 𝑘

𝑛

2∆𝑦
+ Ƹ𝑗

𝜓 𝑖+1 𝑗𝑘
𝑛 −𝜓 𝑖−1 𝑗𝑘

𝑛

2∆𝑥
and 

• 𝑉𝜒 = − Ƹ𝑖
𝜕𝜒

𝜕𝑥
+ Ƹ𝑗

𝜕𝜒

𝜕𝑦
≈ − Ƹ𝑖

𝜒 𝑖+1 𝑗𝑘
𝑛 −𝜒 𝑖−1 𝑗𝑘

𝑛

2∆𝑥
+ Ƹ𝑗

𝜒𝑖 𝑗+1 𝑘
𝑛 −𝜒𝑖 𝑗−1 𝑘

𝑛

2∆𝑦

Application



A few important concepts about Finite Difference Scheme

• Consistency or compatibility of  a FDS: A FDS is said to be compatible or consistent 

if  the FD approximation of  derivative tends to its exact value or analytical value at 

each point / at each time as ∆𝑥, ∆𝑦, ∆𝑧, ∆𝑡 → 0.

• Convergence: Numerical solution of  a well posed IVP is said to be convergence if  it 

tends to analytical or exact solution as ∆𝑥, ∆𝑦, ∆𝑧, ∆𝑡 → 0

• Lax equivalence theorem: Given a well posed IVP and a consistent FDS; then 

numerical solution is convergent if  and only if  it is stable, i.e., as number of  time step 

(𝑛) → ∞, at each point.



Explicit & implicit difference scheme

• To understand the concept of  implicitness or explicitness of  a differencing scheme, we 

refer the linear advection equation, viz., 
𝜕𝑓

𝜕𝑡
= −𝑐

𝜕𝑓

𝜕𝑥
, with 𝑐 as constant phase speed.

• If  the above equation is approximated numerically at a discrete time step ‘𝑛’ and at a 
discrete spatial grid ′𝑖′, using forward and leap frog schemes, we get,

Forward difference scheme:  
𝑢𝑖
𝑛+1−𝑢𝑖

𝑛

∆𝑡
= −c

𝑢𝑖+1
𝑛 −𝑢𝑖

𝑛

∆𝑥
⇒ 𝑢𝑖

𝑛+1 = 𝑓(𝑢𝑖
𝑛, 𝑢𝑖+1

𝑛 )

Central difference scheme:  
𝑢𝑖
𝑛+1−𝑢𝑖

𝑛−1

2∆𝑡
= −c

𝑢𝑖+1
𝑛 −𝑢𝑖−1

𝑛

2∆𝑥
⇒ 𝑢𝑖

𝑛+1 = 𝑓(𝑢𝑖
𝑛−1, 𝑢𝑖+1

𝑛 , 𝑢𝑖−1
𝑛 )

• In both the above schemes, values at future time step is obtained using the values at 
present and/or past time steps. Such scheme is known as explicit scheme.



….Explicit & implicit difference scheme

•
𝑢𝑖
𝑛+1−𝑢𝑖

𝑛

∆𝑡
= −c

𝑢𝑖+1
𝑛+1+𝑢𝑖+1

𝑛

2
−

𝑢𝑖−1
𝑛+1+𝑢𝑖−1

𝑛

2

2∆𝑥

⟹ 𝑢𝑖
𝑛+1 = 𝑓(𝑢𝑖

𝑛, 𝑢𝑖+1
𝑛 , 𝑢𝑖−1

,𝑛 , 𝑢𝑖+1
𝑛+1, 𝑢𝑖−1

,𝑛+1)

• Thus, value of the variable at a grid point at future time step (n+1)
requires present value of the variable at the grid point and future
value at neighbouring grid points.

• Such scheme is known as implicit scheme.

• Time derivative is approximated numerically using forward

difference scheme and space derivative is approximated using

central difference scheme, averaged between time steps ‘n’ &

‘(n+1)’, as follows:



Issues with numerical methods- Linear computational instability-CFL 

criteria

• Solve the linear advection equation:
𝜕𝑓

𝜕𝑡
= −𝑐

𝜕𝑓

𝜕𝑥
.

Given, 𝑓 𝑥, 0 = 𝐴𝑒𝑖𝑘𝑥, c is constant phase speed.

• Its analytical/exact solution is 𝑓 𝑥; 𝑡 = 𝐴𝑒𝑖𝑘(𝑥−𝑐𝑡) , a bounded
solution.

• However, when attempted to solve numerically using LFS, it can be

shown that the numerical solution is stable if 𝑐
∆𝑡

∆𝑥
< 1, otherwise

unstable.

• Thus computational stability for LFS is conditional only



CFL criteria

• 𝑢𝑗
𝑛 = 𝐵𝑛∆𝑡 exp 𝑖𝑘𝑗∆𝑥 ⇒

𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝑖𝑛 𝑡ℎ𝑒 𝐿𝐴𝐸 𝑎𝑡 𝑖𝑡ℎ 𝑔𝑟𝑖𝑑 & 𝑛𝑡ℎ 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝, 𝑤𝑒 𝑜𝑏𝑡𝑎𝑖𝑛

𝐵∆𝑡 − 𝐵−∆𝑡 = 2𝑖 𝑐
∆𝑡

∆𝑥
𝑆𝑖𝑛 𝑘∆𝑥 ⇒ 𝐵∆𝑡 = ± 1 − 𝜎2 + 𝑖𝜎,𝑤ℎ𝑒𝑟𝑒 𝜎 =

𝑐
∆𝑡

∆𝑥
𝑆𝑖𝑛 𝑘∆𝑥 . If  𝜎 > 1, 𝑡ℎ𝑒𝑛 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑒𝑥𝑐𝑒𝑒𝑑𝑠 1

⇒ 𝐵𝑛∆𝑡 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 𝑙𝑎𝑟𝑔𝑒 𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 ′𝑛′.

Thus numerical solution is stable if  𝜎 < 1 ⇒ 𝑐
∆𝑡

∆𝑥
< 1. This is known as CFL criteria.

Thus LFS is conditionally stable.

Numerical solution of  linear advection equation using LFS:



Physical interpretation of  CFL criteria

• Let us consider two successive grid points 𝑖∆𝑥 & 𝑖 + 1 ∆𝑥.

• Suppose there is an error caused at the grid point 

𝑖∆𝑥 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑠 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑎𝑡 𝑎 𝑠𝑝𝑒𝑒𝑑 ′𝑐′.

• Then in one time step integration, the error can propagate a distance 𝑐∆𝑡 forward.

• Thus to ensure that the error can’t reach the next grid point 𝑖 + 1 ∆𝑥, in one time 

integration to contaminate this grid point by the error, we should have,𝑐∆𝑡 < ∆𝑥 ⇒

𝑐
Δ𝑡

Δ𝑥
< 1 ⇒ 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐶𝐹𝐿 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎.



Stability using semi implicit scheme

• 𝑢𝑗
𝑛 = 𝐵𝑛∆𝑡 exp 𝑖𝑘𝑗∆𝑥

• 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝑖𝑛 𝑡ℎ𝑒 𝐿𝐴𝐸 𝑎𝑡 𝑖𝑡ℎ 𝑔𝑟𝑖𝑑 & 𝑛𝑡ℎ 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝, 𝑤𝑒 𝑜𝑏𝑡𝑎𝑖𝑛

• 𝐵∆𝑡 − 1 = −𝑖𝑐
∆𝑡

2∆𝑥
sin 𝑘∆𝑥 𝐵∆𝑡 + 1 ⇒

𝐵∆𝑡−1

𝐵∆𝑡+1
= −

𝑖𝜎 sin 𝜇∆𝑥

2
⇒ 𝐵∆𝑡 =

2−𝑖𝜎 sin 𝜇∆𝑥

2+𝑖𝜎 sin 𝜇∆𝑥
==

4+𝜎2sin2 𝜇∆𝑥 −4𝑖𝜎 sin 𝜇∆𝑥

4+𝜎2sin2 𝜇∆𝑥
⇒ 𝐵∆𝑡 = 1

• Thus, 𝐵∆𝑡 𝑛
= 1 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 ′𝑛′. Hence this scheme is unconditionally or 

absolutely stable.

Numerical solution of  linear advection equation using semi implicit scheme

𝑢𝑗
𝑛+1−𝑢𝑗

𝑛

∆𝑡
= −c

𝑢𝑗+1
𝑛+1+𝑢𝑗+1

𝑛

2
−

𝑢𝑗−1
𝑛+1+𝑢𝑗−1

𝑛

2

2∆𝑥



Issues with numerical methods- Non-linear instability

• then the wave length of  shortest possible wave is 2𝛿𝑥, as shown in 

adjoining figure.

• Let the dependent variables be expressed  as 𝑢 𝑥, 𝑡 =
σ𝑘=1
𝑛 𝑢1𝑘 cos 𝑘𝑥 + σ𝑘=1

𝑛−1𝑢2𝑘 sin 𝑘𝑥 and 

• 𝑓 𝑥, 𝑡 = σ𝑘=1
𝑛 𝑓1𝑘 cos 𝑘𝑥 + σ𝑘=1

𝑛−1 𝑓2𝑘 sin 𝑘𝑥

• Then the product term will have term like sin 𝑚 + 𝑙 𝑥, cos(
)

𝑚 +
𝑙 𝑥 𝑒𝑡𝑐.

• Consider nonlinear advection equation
𝜕𝑓

𝜕𝑡
= −u

𝜕𝑓

𝜕𝑥
, u is a function of  x,t.

• Let us consider a limited interval 𝑎, 𝑏 and be divided into ‘N’ equal segments, by inserting 

grid points, 𝑎 = 𝑥0, 𝑥1, 𝑥2, … . . , 𝑥𝑛−1, 𝑥𝑛 = 𝑏, with width 𝛿𝑥 between two arbitrary 

consecutive points.



• For some terms, 𝑚 + 𝑙 >
𝑁

2
.

• Such terms corresponds to wave 

with wave length < 2𝛿𝑥.

• But the shortest wave, that can be 

represented with given grid 

arrangement is 2𝛿𝑥.

• Thus a wave with wave length 

shorter than 2𝛿𝑥 will be falsely 

represented by a relatively longer 

wave of  wave length 2𝛿𝑥.

• This false representation of  a shorter 

wave by a longer wave is known as 

aliasing.

• Repeated aliasing gives rise to  non 

linear instability.

• It is due to the presence of  non linear 

term u
𝜕𝑓

𝜕𝑥



Advection of  a scalar field 𝑆 can be expressed as 𝐽 𝜓, 𝑆 , 𝜓 being a stream 
function, related

with horizontal wind vector 𝑉𝐻 𝑎𝑠 𝑉𝐻 = 𝑘𝑋∇𝜓.

It can be shown that if  different expressions of  J are numerically approximated 
at i, j th grid point, numerically by say, J1, J2 &J3; then Arakawa Jacobian,  

defined by J =
J1+J2+J3

3
. If  the advection term is numerically approximated by 

Arakawa Jacobian, then this Aliasing and non-linear instability can be 
eliminated.



• The governing equation for a non-divergent Barotropic model is 

𝑑ℎ(𝜁+𝑓)

𝑑𝑡
= 0. In this model globally averaged ensthropy

(𝜁2) 𝑎𝑛𝑑 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑚𝑎𝑖𝑛𝑠 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑒𝑑.

It is shown that in this model if  the horizontal advection of  vorticity is approximated either by 
𝐽1 or 𝐽2 𝑜𝑟𝐽3; 𝑡ℎ𝑒𝑛 𝑏𝑜𝑡ℎ 𝑜𝑓 averaged ensthropy
𝜁2 𝑎𝑛𝑑 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑜𝑛′𝑡 𝑟𝑒𝑚𝑎𝑖𝑛 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑒𝑑.

However when the Jacobean 𝐽 𝑆, 𝜓 is numerically approximated by 
𝐽1+𝐽2+𝐽3

3
, then it has been 

seen that both (𝜁2) 𝑎𝑛𝑑 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑚𝑎𝑖𝑛𝑠 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑒𝑑. This ensures no Aliasing, 
thus non-linear instability is eliminated.



Thanks for kind & patience hearing


