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Different types of differential eqations
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General form of 224 order PDE
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General form of 22 order PDE is: A a—lzt + B i
dx 0x0y
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A,B,C.D,E,F are coefficients, may be all of them constants or a couple/all of them may be

unctions of x,y; G is a known quantity may be a constant or a function of x,y and u(x,y)
s an unknown function to be determined.
If all these coetficients are constants or functions of independent variables ( x , y), then

the resulting PDE is known as a Linear PDE. Example: @ 49 0°u ot 0°u ~0
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On the other hand, if at least one these coefficients is a function dependent variable, then

the resulting PDE is known as a non-linear PDE. Example: |, @ i V@_U S i @
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Governing equations ot NWP
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These non-linear PDE can’t be solved analytically, a couple of the reasons for which
are:

* We don’t have any analytical expression for the time & space variations of the
Meteorological variables.

* Rather we have their numerical values at discrete points in space at a given time

* Coetficients of the non-linear terms also don’t have known analytical expression.

Then what?

Proceed for alternative approach — Numerical methods is one of the alternative
approaches for time integration of the model equations.




Numerical methods

* In numerical method first the continuous time and 3-D space domain are discretized, like,
{(x,y,2): (x,v,2) € R3} - {(iAx, jAy, kAz): (i, ], k) € Z3&Ax, Ay, Az given } and time domain {t:0 < t <

o} - {nAt:n € Z &At given }.
. The discrete spatial points (iAx, jAy, kAz) are denoted by (i, j, k) and called (i, j, k) grid point. Similarly,
the discrete time nAt is called ‘n’ th time step.

* In numerical method values of the field variables (u, v,w,p, T, q, p) are specified at all discrete grid
points at the time step ‘0’ (initial time).

* Using these values of the field variables at different grid points at a given time step, spatial derivatives
of the field variables are approximated numerically using a suitable finite difference scheme (FDS), for
specifying the right-hand sides of the equations completely.

* This is followed by numerical integration in time for predicting values of the variable valid at next time
step
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.....Numerical methods

* Finite difference methods:

. ° To approximate numerically the time & space derivatives of the variables

* Major finite differencing techniques:

* Forward
* Backward

* Central or leapfrog




° Taylof’s series: It is known that if a real valued function f(
closed interval [a, a + h], i.e., if f(x) is analytical over [a, a + h], then

n
fla+h) =f(a)+ .- e A Mot corolo sieal v nobies o simed (olbs cononues
space & time domain.

° Thus in a given grid [xj,xjﬂ],fj’il = f(xjil,nAt) = f(xj SEUAWE nAt) = f(xj,nAt) 1
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.....Numerical methods

Forward differencing scheme (FDS):
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.....Numerical methods
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Backward differencing scheme (BDS):
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° Error~0(Ax, Ay, Az, At)




.....Numerical methods

Central differencing scheme or leap trog scheme (LES):
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° Non linear horizontal advection of a scalar S(x, y) can be
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Numerical approximation of Jacobean

P Numerical approximate value of the 3 expressions of J(, S)can be expressed as follows:
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Numerical approximation ot Laplacian

Laplacian of a scalar field f (x, y) at any point (X, y) is given by,
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Relaxation method for solving Poison’s equation
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General form of 2% order PDE is: A 6_12L + B + CQ + D oL + Ea—u + Fu=G
ox 0y?2 0x oy

,B,C,D,E,F are coefficients, may be all of them constants or a couple/all of them may be
unctions of x,y; G is a known quantity may be a constant or a function of x,;y and u(x,y) is an

nknown function to be determined.

Above equation is called Parabolic, if B 2 —4AC =0
Elliptic, if B4 — 4AC < 0
and Hyperbolic, if B* — 4AC > 0
Poison’s equation is given by V2u = G(x,y). For this equation, A=B =1;C=D=E =F = 0.
So, for this equation, B4 — 4AC = —4 < 0 = Poison’s equation is an elliptic PDE.




* Numerically approximate form of the above equation at a grid point (i, ) is
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* This method starts with some initial guess values of the unknown function u(x,y) at

all grid points. If, ug) 3.) is the 1nitial guess value of u(x,y) at any arbitrary grid point

(1,)); then error in the initial guess, when substituted in the above equation, is given

by
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Above relation gives an improved guess value of u(x,y) at a grid point (i,))

N (1) = (0) (0)
LB R(u) T Ui

Then, following similar arguments, the error in the first improved guess 1s given by
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The iteration process 1s said to converges when two successive improved guess of the

unknown function u(x,y) differs by a number smaller than a very small pre-assigned

positive number, say, &,1.e., when ugr}-)l_l) — ugr;)) < &, at every grid point (1,)).

Then either of these two successive improved guess value may be treated as approximate
numerical solution of Poison’s equation at a grid point (1,)).

Using this method, knowing horizontal wind components (u,v) at different grid points,
one can find out stream function (), velocity potential (), rotational wind (V_lp)) and
divergent wind (VX)), using following steps:




Application
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Set up the poison’s equations for the stream function () and velocity potential (y) : V2 =
¢(x,y) and V2y = —Dp(x, ).

Solve them using Relaxation method to find out Y, y at each grid point (i,j) at any vertical level
Ck?.

* Then, rotational & divergent wind at any grid point are obtained as:
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A few important concepts about Finite Difference Scheme

* Consistency or compatibility of a FDS: A FDS is said to be compatible or consistent
it the FD approximation of derivative tends to its exact value or analytical value at
. each point / at each time as Ax, Ay, Az, At — 0.

* Convergence: Numerical solution of a well posed IVP is said to be convergence if it
tends to analytical or exact solution as Ax, Ay, Az, At — 0

* Lax equivalence theorem: Given a well posed IVP and a consistent FDS; then
numerical solution is convergent if and only if it is stable, i.e., as number of time step
(n) — o0, at each point.




Explicit & implicit difference scheme

* To understand the concept of implicitness or explicitness of a differencing scheme, we
VSN N
refer the linear advection equation, viz., = G with ¢ as constant phase speed.

* If the above equation is approximated numetically at a discrete time step ‘N’ and at a
discrete spatial grid 'i’, using forward and leap frog schemes, we get,

ultft gt ult  —uit S
Forward difference scheme: — o S = aE l+A1x — U R )
i B n—1
> U; =Us u u
Central difference scheme: — 2Atl = —C l+;Axl ton s

* In both the above schemes, values at future time step is obtained using the values at
present and/or past time steps. Such scheme is known as explicit scheme.




..Explicit & implicit ditference scheme

* Time derivative is approximated numerically using forward
difference scheme and space dertvative is approximated using
central difference scheme, averaged between time steps ‘n’ &
‘(nt1)’, as follows:

n+1,. n n+l,. n
n+1 ..n (ui+1 +“i+1) (ui—l +ui—1)
up —u 2 = 2
: —C

At RAN

n+1 __ n n n n+1 n+1
==t = N sl

® Thus, value of the variable at a grid point at future time step (n+1)
requires present value of the variable at the grid point and future
value at neighbouring grid points.

* Such scheme 1s known as implicit scheme.




Issues with numerical methods- Linear computational instability-CFL
criteria
; . : af af
* Solve the linear advection equation: P i
. Given, flx, 0) — Aellx , C 1s constant phase speed. .
* Its analytical/exact solution is f(x;t) = Ae**=¢) 3 bounded |

solution.

* However, when attempted to solve numerically usirAlg LES it can be

shown that the numerical solution is stable if C < 1, otherwise
unstable.

* Thus computational stability for LES is conditional only




CFL criteria

Numerical solution of linear advection equation using LES:

* ul' = B" exp(ikjAx) =

substituting in the LAE at ith grid & nth time step, we obtain
B

A= B8 oy (ci—;Sin(kAx)) = BAl = ++/1 — 02 + io,where g =

cﬁ—;Sin(kAx). If 0 > 1,then magnitude of one of the solutions exceeds 1

= B™ becomes large for large 'n’.

Thus numerical solution is stable if 0 < 1 = ¢ é < 1. This is known as CFL criteria.

Thus LES is conditionally stable.




Physical interpretation of CEFL criteria

* Let us consider two successive grid points iAx & (i + 1)Ax.

* Suppose there is an error caused at the grid point
iAx and the error propagates forward at a speed 'c’.

* Then in one time step integration, the error can propagate a distance cAt forward.

* 'Thus to ensure that the error can’t reach the next grid point (i + 1)Ax, in one time

integration to contaminate this grid point by the error, we should have,cAt < Ax =

A St . Sl
CA—; < 1 = Physical interpretation of CFL criteria.




Stability using semi implicit scheme

Numerical solution of linear advection equation using semi imphcit scheme

Sndll o [(”?:11 +ullyy) (ujii+uly)
—C
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2Ax
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At

* ul' = B™ exp(ikjAx)

° substituting in the LAE at ith grid & nth time step, we obtain

(B — 1) = —ic 2L sin(kAx) [(BY +1)] » B = _fosin@dn , pac

(BAt+1) 2
2—io sin(uAx) _ 4+0?sin?(uAx)—4io sin(ulAx) b |BAt| g
2+io sin(uAx) 4+02sin?(uAx) S

Thus, |B At|n = 1 for any time step 'n’. Hence this scheme is unconditionally or
absolutely stable.




Issues with numerical n%?thodsé fNon—hnear instability

* Consider nonlinear advection equation o et is a function of x.t.

* Let us consider a limited interval|a, b] and be divided into ‘N’ equal segments, by inserting
grid points, @ = Xg, X1, X2, v+« 2, Xn—1, Xn = b, with width 0x between two arbitrary

consecutive points.

° then the wave length of shortest possible wave is 20X, as shown in

. adjoining figure.

* Let the dependent variables be expressed as u(x,t) =
Y uly coskx + YR-7u2; sin kx and
e flot)=X0 - fl; coskx FXNISFF2, sinkx

* Then the product term will have term like sin(m + 1) x, cos(m +
l) x etc.
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* For some terms, (m + 1) > 5

* Such terms corresponds to wave [[\

with wave length < 20x. I &

* But the shortest wave, that can be L
represented with given grid * This false representation ot a shorter
arrangement is 20X. wave by a longer wave is known as .

, aliasing.
* Thus a wave with wave length

shorter than 26x will be falsely — ° Repeated aliasing gives rise to non

represented by a relatively longer linear instability.
wave of wave length 20x. * It is due to the presence of non linear
af

term u N
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Advection of a scalar field S can be expressed as J (¥, S), Y being a stream

function, related

with horizontal wind vector V_H) as V_H) = kX ﬁl/)

It can be shown that if different expressions of | are numerically approximated
at (i,j)th grid point, numerically by say, J1, ], &J3; then Arakawa Jacobian,

defined by | = ]1+]§+]3. If the advection term is numerically approximated by

Arakawa Jacobian, then this Aliasing and non-linear instability can be
eliminated.




* The governing equation for a non-divergent Barotropic model is

dp(+f)

TR 0. In this model globally averaged ensthropy

({?) and kinetic energy remains conserved.

It is shown that in this model if the horizontal advection of vorticity is approximated either by
J1 ot J, or]3; then both of averaged ensthropy
C?)and kinetic energy don't remain conserved.

However when the Jacobean J (S, ) is numerically approximated by L22%s ihen it has been

seen that both ({?) and kinetic energy remains conserved. This ensures no Aliasing,
thus non-linear instability 1s eliminated.




Thanks for kind & patience hearing




